
dino Documentation

uberspace.de

Mar 13, 2023

Contents

1 Database 3
1.1 SQLite . 3
1.2 PostgreSQL . 3
1.3 MySQL / MariaDB . 4

2 Setup using pip 5
2.1 Prerequisites . 5
2.2 Dino . 7
2.3 Updates . 9

3 Configuration 11
3.1 Location . 11
3.2 File Format . 11
3.3 Options . 12

4 Webserver 17
4.1 Installation . 17
4.2 Configuration . 17
4.3 Static Files . 18
4.4 Start nginx . 18
4.5 Finishing up . 18

5 Backups 19
5.1 SQLite . 19
5.2 PostgreSQL . 19
5.3 MySQL / MariaDB . 19

6 Users & Tenants 21
6.1 Users . 21
6.2 Tenants . 21

7 Zone Data 23
7.1 Modifcation outside dino . 23

8 User Signup 25
8.1 Enabling Signup . 25
8.2 Restricting Domains . 25

i

8.3 Social Accounts . 26

ii

dino Documentation

Dino is a modern DNS record editor for PowerDNS. It uses the PowerDNS-API, has a high test coverage, rich docu-
mentation and comes with batteries included!

Take a look at the documentation sections on the left side and choose something to your liking.

Contents 1

dino Documentation

2 Contents

CHAPTER 1

Database

Before we can start installing dino the database needs to be prepared. There are no special requrements so any database
supported by django may be used. Official support is given for SQLite, PostgreSQL and MySQL/MariaDB.

With the exception of SQLite these instructions assume that your database system was installed, intialized, correctly
configured and started and only deals with aspects relevant to our setup.

1.1 SQLite

By default dino uses a SQLite database, which is just a file on your disk. In this case, no configuration is necessary.
Please keep in mind that, while being a capable database, SQLite does not scale well and has weaker guarantees than
server-based database solutions like PostgreSQL.

1.2 PostgreSQL

The Wikipedia describes PostgreSQL as:

(. . .) an open source object-relational database management system with an emphasis on extensibility and
standards compliance.

Create a new user and database for dino:

postgres@host:~$ createuser dino -P
Enter password for new role: ******
Enter it again: ******
postgres@host:~$ createdb dino --owner=dino

Note: If dino and PostgreSQL are running on the same host, your setup can be password-less using a UNIX socket
connection and Peer Authentication. Skip the -P parameter in this case.

3

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-DATABASE-ENGINE
https://en.wikipedia.org/wiki/PostgreSQL
https://www.postgresql.org/docs/current/auth-peer.html

dino Documentation

1.3 MySQL / MariaDB

MariaDB describes itself as:

(. . .) one of the most popular database servers in the world. It’s made by the original developers of
MySQL and guaranteed to stay open source. Notable users include Wikipedia, WordPress.com and
Google.

Create a new user and database for dino:

root@host:~# mysql
mysql> CREATE DATABASE dino DEFAULT CHARACTER SET utf8mb4 DEFAULT COLLATE utf8mb4_
→˓general_ci;
mysql> GRANT ALL PRIVILEGES ON dino.* TO dino@'localhost' IDENTIFIED BY '*********';
mysql> FLUSH PRIVILEGES;

4 Chapter 1. Database

https://mariadb.org/about/

CHAPTER 2

Setup using pip

This guide explains how to install dino inside a fresh ubuntu 18.04 bionic box. It includes the installation of all on-host
prerequisites and provides you with a fully functional Dino instance.

Most of the steps are the same for other distributions like Debian or CentOS, so you should be able to adpat this to
your needs as you go. We’d be glad about full guides for other operating systems. So please feel free to send us tips
or even open a Pull Request on GitHub.

2.1 Prerequisites

2.1.1 PowerDNS

To use dino, a running PowerDNS instance is required. In addition to the default config, the following options are
needed:

1. enable the API and choose a sane API key
api=yes
api-key=SOME_LONG_API_KEY_CHANGE_ME_PLEASE

2. enable the webserver and give dino acces to it
either by whitelisting it here, in your reverse proxy or in your firewall.
webserver=yes
webserver-address=0.0.0.0
webserver-port=8080
webserver-allow-from=1.2.3.4/32

Remember (. . . or write down) server hostname, webserver port as well as the API key.

2.1.2 Python 3.6

Python 3.6 or newer is required. Ubuntu already comes with python 3.6, so we’re good here. To complete the python
setup, install the package manager pip, which is needed later.

5

https://github.com/Uberspace/dino/

dino Documentation

root@ubuntu-bionic:~# python3 --version
Python 3.6.7
root@ubuntu-bionic:~# apt install -y python3-pip
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
(...)

Note: Debian users might be able to compile python 3.6 from source or get it from the Debian Sid repos.

Note: CentOS users can get python 3.6 from the IUS Project; install python36u as well as python36u-pip.

2.1.3 Other dependencies

We also need some further dependencies to install uWSGI via pip in the next step.

root@ubuntu-bionic:~# apt install -y python3-setuptools build-essential python3-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
(...)
root@ubuntu-bionic:~# pip3 install wheel
Collecting wheel

Downloading https://files.py..
(...)

2.1.4 uWSGI

uWSGI actually runs dino and will later provide it via HTTP on port 8080. It is installed globally using pythons
dependency manager pip:

root@ubuntu-bionic:~# pip3 install uwsgi
Collecting uwsgi

Downloading https://files.py..
(...)

2.1.5 System User

To make sure dino can only access what it needs to access, create a new user.

Note: Instead of using the default www-dino, you can freely choose any non-existing username. Just make sure to
adapt the following steps and the systemd unit accordingly.

root@ubuntu-bionic:~# adduser --disabled-password --disabled-login \
--system --home /opt/dino www-dino

6 Chapter 2. Setup using pip

https://packages.debian.org/sid/python3.6
https://ius.io

dino Documentation

2.2 Dino

root@ubuntu-bionic:~# sudo -Hu www-dino pip3 install --user \
https://github.com/Uberspace/dino/archive/master.zip#subdirectory=src

Collecting https://github.com/Uberspace/dino/archive/master.zip#subdirectory=src
Downloading https://github.com/Uberspace/dino/archive/master.zip
/ 1.3MB 295.2MB/s

(...)
Successfully installed (...) dino-0.1 (...)

Note: If you’d like to use a database other than SQLite, the corresponding python client library needs to be installed.
Use one of the following urls instead of the one given above:

• MySQL/MariaDB: https://github.com/Uberspace/dino/archive/master.zip#egg=dino[mysql]&subdirectory=src

• PostgreSQL: https://github.com/Uberspace/dino/archive/master.zip#egg=dino[pgsql]&subdirectory=src

Additionally, the libmariadbclient-dev apt package is required for mysql.

2.2.1 Configuration

Create a file called /etc/dino.cfg with the following content. It provides a bare-bones configuration for django,
which should be extended. Please go through the list of config options and set the appropriate values.

a long (>64 chars) and random (alpha-numeric-ish) string of characters
DINO_SECRET_KEY=
URL to your PowerDNS server API endpoint, e.g. https://yourpowerdns.com/api/v1
DINO_PDNS_APIURL=
PowerDNS API key from /etc/pdns/pdns.conf
DINO_PDNS_APIKEY=
comma-separated list of hostnames dino should be reachable under
DINO_ALLOWED_HOSTS=
a place for dino to drop internal data; must be writeable by dino and
not publicly acccessible
DINO_BASE_DIR=/opt/dino
make use of the X-Forwarded-Host/Proto headers in nginx config
DINO_TRUST_PROXY=True

Note: By default, dino uses a SQLite database inside DINO_BASE_DIR. If you’d like to use a different system or
database location, provide the respective URL as DINO_DB_URL:

• SQLite: sqlite:////some/absolute/path/db.sqlite3

• PostgreSQL (Password): postgres://dino:PASSWORD@127.0.0.1:5432/dino

• PostgreSQL (UNIX-Socket / Peer Auth): postgres://%2Fpath%2Fto%2Fsocket/dino

• MySQL: mysql://dino:PASSWORD@127.0.0.1:3306/dino

Further information can be found in the dj-database-url documentation.

2.2. Dino 7

https://github.com/Uberspace/dino/archive/master.zip
https://github.com/Uberspace/dino/archive/master.zip
https://github.com/kennethreitz/dj-database-url#url-schema

dino Documentation

2.2.2 Service

To start dino automatically when your server boots up, create a new systemd unit in /etc/systemd/system/
dino.service and add the following content.

Warning: The path to uwsgi (/usr/local/bin/uwsgi) may vary on other distributions. To be on the safe
side, use the command which uwsgi to get the path for your installation.

[Unit]
Description=uWSGI dino
After=networking.target

[Service]
ExecStart=/usr/local/bin/uwsgi --http-socket :8080 --master --workers 8 --module dino.
→˓wsgi
User=www-dino
Restart=always
KillSignal=SIGQUIT
Type=notify
StandardError=syslog
NotifyAccess=all

[Install]
WantedBy=multi-user.target

Finally, load the newly create service:

root@ubuntu-bionic:~# systemctl daemon-reload

2.2.3 Finishing up

Initialize the database

The following command creates all tables needed by dino. This will connect to the database server specified in
DINO_DB_URL, which defaults to using a file-based SQLite database. If you’d like to use a different database, jump
back to the Configuration section and adpat the setting.

root@ubuntu-bionic:~# sudo -Hu www-dino python3 -m dino migrate
DEBUG enabled, but django_extensions not installed. skipping app.
Operations to perform:

Apply all migrations: account, admin, auth, contenttypes, sessions, sites,
→˓socialaccount, synczones, tenants
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying account.0001_initial... OK
Applying account.0002_email_max_length... OK

(...)

Create an admin user

The very first user has to be created using an interactive command. Additional users can be created in the web interface,
once we’re up and running.

8 Chapter 2. Setup using pip

dino Documentation

root@ubuntu-bionic:~# sudo -Hu www-dino python3 -m dino createsuperuser

Start dino

root@ubuntu-bionic:~# systemctl enable dino --now

Congratulations, is now running! You can verify this by querying the port directly:

root@ubuntu-bionic:~# curl 127.0.0.1:8080
<h1>Bad Request (400)</h1>

You can now configure your webserver to route requests to dino, either by yourself or using the Webserver guide.

2.3 Updates

To update dino repeat the pip3 install and dino migrate steps from the installation guide. Afterwards,
restart dino to load the new code.

root@ubuntu-bionic:~# sudo -Hu www-dino pip3 install --user \
https://github.com/Uberspace/dino/archive/master.zip#subdirectory=src

(...)
root@ubuntu-bionic:~# sudo -Hu www-dino python3 -m dino migrate
(...)
root@ubuntu-bionic:~# systemctl restart dino

2.3. Updates 9

dino Documentation

10 Chapter 2. Setup using pip

CHAPTER 3

Configuration

Dino provides a variety of configuration options. Have a quick list through the list to see which ones are relevant to
you!

3.1 Location

There are multiple ways to set configuration options:

1. File /etc/dino.cfg, global config

2. File ~/.dino.cfg, user config

3. File ./dino.cfg, local config

4. Process Environment (e.g. $DINO_BASE_DIR)

They are loaded in the order above; later files overwrite earlier ones.

3.2 File Format

Configuration is stored in a simple, non-nested key=value format. Comments can be added using # on dedicated
lines. Lines without = are ignored.

this is a comment
DINO_BASE_DIR=/opt/dino
DINO_SECRET_KEY = verysecret

11

dino Documentation

3.3 Options

3.3.1 DINO_BASE_DIR

Existing directory for dino to write internal data to. It must thus be created beforehand and be writeable by the user
you use to run dino. It is currently only used to store the SQLite database (if used), but may contain other data in
future releases. Note that this directory must not be accssible publicly.

• type: String

• required: no

• default: .../lib/python3.x/site-packages/dino/

• example: /opt/dino

3.3.2 DINO_SECRET_KEY

Long (>64 chars), random and ascii string of characters. It is used by django to derive crypto keys for cookies and
other security-critical applications. Ensure that the string is private at all times. It can be changed without negative
effect, if leaked accidentially.

• type: String

• required: yes

• example: Aixa1ahs1euyo2oopii-Y:eex8sie~d5

This is a stock django setting; refer to the “SECRET_KEY” django docs for more information.

3.3.3 DINO_DEBUG

Run dino in development mode. Do not enable this setting in production, as it might leak sensitive information to
clients.

• type: Boolean

• required: no

• default: False

This is a stock django setting; refer to the “DEBUG” django docs for more information.

3.3.4 DINO_ALLOWED_HOSTS

List of hostnames under which dino should be accessible at. Accessing dino using a Host: header not in this list,
yields an 400 Bad Request error.

• type: List

• required: yes

• example: dino.company.com,dino.internal

This is a stock django setting; refer to the “ALLOWED_HOSTS” django docs for more information.

12 Chapter 3. Configuration

https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-ALLOWED_HOSTS

dino Documentation

3.3.5 DINO_PDNS_APIURL

Full URL to your PowerDNS server API endpoint, including the /api/v1 path.

• type: String

• required: yes

• example: https://yourpowerdns.com/api/v1

3.3.6 DINO_PDNS_APIKEY

PowerDNS API key from pdns.conf.

• type: String

• required: yes

• example: wooviex7ui0Eiy2Gohth4foovoob5Eip

3.3.7 DINO_LOGIN_PROVIDERS

Social login providers to load and offer to users. Please refer to the django-allauth docs for a list of available providers.

• type: List

• required: no

• example: google,soundcloud

3.3.8 DINO_DB_URL

Database to connect to; refer to dj-database-url for information on the URL schema.

• type: String

• required: no

• default: sqlite:////home/docs/checkouts/readthedocs.org/user_builds/dino/
envs/latest/lib/python3.7/site-packages/db.sqlite3

• example: mysql://dino:password@host/dino

3.3.9 DINO_TRUST_PROXY

Whether to trust the information given in the X-Forwarded-Proto and X-Forwarded-Host HTTP headers. If
dino is behind a reverse proxy, set this to True. Ensure that your server software is a) setting these headers and b)
discards any content provided by clients.

• type: Boolean

• required: no

• default: False

3.3. Options 13

https://django-allauth.readthedocs.io/en/latest/installation.html
https://github.com/kennethreitz/dj-database-url#url-schema

dino Documentation

3.3.10 DINO_HTTPS_ONLY

Whether to enforce HTTPS, set HSTS and send cookies on HTTPS only. Recommended, if your setup exposes dino
on HTTPS (which, again, is recommended).

• type: Boolean

• required: no

• default: False

3.3.11 DINO_TIMEZONE

Timezone to use for auditing and logging.

• type: String

• required: no

• default: UTC

• example: Europ/Berlin

This is a stock django setting; refer to the “TIMEZONE” django docs for more information.

3.3.12 DINO_ENABLE_EMAIL_SIGNUP

Whether to let users create permissionless accounts without any prior authentication using username/password. not
recommended, refer to User Signup for details.

• type: Boolean

• required: no

• default: False

3.3.13 DINO_ENABLE_SOCIAL_SIGNUP

Whether to let users create permissionless accounts without any prior authentication social login (google, openid, . . .).
not recommended, refer to User Signup for details.

• type: Boolean

• required: no

• default: False

3.3.14 DINO_VALID_SIGNUP_DOMAINS

If DINO_ENABLE_EMAIL_SIGNUP is enabled, restrict creation of new users to the given domains. Any user,
who can receive mail at a whitelisted domain will then be able to create a permissionless account without any prior
authentication. Accounts need to be activated by verifiying the email address, though.

• type: List

• required: no

• default: []

14 Chapter 3. Configuration

https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-TIMEZONE

dino Documentation

• example: company.com,company.internal

3.3.15 DINO_ZONE_DEFAULT_KIND

PowerDNS kind to set for new zones, may be Native, Master or Slave. See PowerDNS Docs.

• type: String

• required: no

• default: Native

• example: None

3.3.16 DINO_ZONE_DEFAULT_NAMESERVERS

List of nameservers to set for new zones.

• type: List

• required: no

• example: ns1.company.com,ns2.company.com

3.3.17 DINO_ZONE_DEFAULT_MASTERS

List of masters to set for new zones.

• type: List

• required: no

• example: 1.3.3.7,1.3.3.8

3.3.18 DINO_USE_DEFAULT_RECORD_TYPES

Whether to offer a selection of default record types (A, AAAA, MX, CAA, . . .) in the GUI, or rely on
DINO_CUSTOM_RECORD_TYPES only.

• type: Boolean

• required: no

• default: True

3.3.19 DINO_CUSTOM_RECORD_TYPES

Additional record types to offer in the GUI. Any record type can be used here, but PowerDNS or secondary DNS
servers might not be able to handle them.

• type: List

• required: no

• example: X25,SPF,DS

3.3. Options 15

seehttps://doc.powerdns.com/authoritative/http-api/zone.html#zone

dino Documentation

16 Chapter 3. Configuration

CHAPTER 4

Webserver

Even though dino is running, it’s currently not possible to reach it from the outside world (e.g. your browser). For
that to happen we need a reverse proxy. In our example nginx will be used, but you can use any other software like
Apache, Lighttpd or Traefik.

Note: Just like the pip setup guide, this guide assumes a fresh ubuntu 18.04 bionic box. Most of the steps are the
same or can be easily adapted for other distributions.

4.1 Installation

root@ubuntu-bionic:~# apt install -y nginx

Warning: Some distributions do not allow nginx to make network connections. This can be changed by enabling
the appropriate SELinux boolean, like so:

root@ubuntu-bionic:~# apt install -y policycoreutils
root@ubuntu-bionic:~# setsebool httpd_can_network_connect true -P

4.2 Configuration

First, remove the default site, if present:

root@ubuntu-bionic:~# rm -f /etc/nginx/sites-enabled/default

Then, create our new configuration in /etc/nginx/sites-enabled/dino:

17

dino Documentation

server {
this configuration does not include any HTTP, which is a bad idea.
use the generator below or any other resource to add transport encryption
to your requests.
https://mozilla.github.io/server-side-tls/ssl-config-generator/
listen 80 default_server;
listen [::]:80 default_server;

server_name _;

location / {
proxy_http_version 1.1;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_pass http://localhost:8080;

}
}

4.3 Static Files

Dino is able to serve all requests itself - this includes static files like CSS or JavaScript. For small setups, pinging
python and django for each and every static file is quite fast enough; refer to the whitenoise documentation details.
Bigger setups with a high volume of requests might benefit from caching those requests.

You can cache everything that is requested from the /static/ directory. URLs look like /static/style/
zoneeditor.d7de63624ec9.css, contain a hash, which changes when the content changes. This means that
you can cache them without any kind of timeout or cache invalidation.

4.4 Start nginx

root@ubuntu-bionic:~# systemctl enable nginx
root@ubuntu-bionic:~# systemctl restart nginx

4.5 Finishing up

You’re done! Fire up your browser and open the URL configured in your webserver. Then you can log in using the
account created using the createsuperuser command.

18 Chapter 4. Webserver

http://whitenoise.evans.io/en/stable/index.html#isn-t-serving-static-files-from-python-horribly-inefficient

CHAPTER 5

Backups

Dino does currently not store any data outside the database. Should there be a need to store data outside the database
in future releases, it will be saved inside the $DINO_BASE_DIR directory (e.g. /opt/dino). If you want your
setup to be futureproof, make backups of it.

For now, all you have to do is backup your database. Below are a couple of common options.

5.1 SQLite

By default dino uses a SQLite database, which is just a file on your disk. To back it up copy $DINO_BASE_DIR/
db.sqlite3 (e.g. /opt/dino/db.sqlite3) to somewhere safe outside the host.

5.2 PostgreSQL

For most setups a simple pg_dump backup will suffice. For write-heavy setups a more robust primary/secondary
backup solution might be prefered.

postgres@host:~$ pg_dump --clean --create --file=dino_$(date -I).sql dino

Refer to the PostgreSQL manual for further instructions.

5.3 MySQL / MariaDB

For most setups a simple mysqldump backup will suffice. For write-heavy setups a more robust primary/secondary
backup solution might be prefered.

root@host:~# mysqldump --single-transaction --add-drop-database --databases dino >
→˓dino_$(date -I).sql

Refer to the MySQL manual for further instructions.

19

https://www.postgresql.org/docs/current/backup-dump.html
https://dev.mysql.com/doc/refman/8.0/en/backup-methods.html

dino Documentation

20 Chapter 5. Backups

CHAPTER 6

Users & Tenants

Dino has a basic multi-tenancy feature, which allows you to create users and give them access to a subset of the
available domains. You can also use admin accounts instead, if this functionality is not needed.

6.1 Users

Dino knows a couple kinds of users:

• admin users, has full access to all zones

• tenant users, has access to associated zones only

During the setup guide a single administrator user was created. You can use this account to log into dino. Further users
should be created using the web interface. Visit /admin/auth/user and use the “Add User” button to create new
users. They can later be associated with a tenant.

6.2 Tenants

By default, there are no tenants created. Visit /admin/tenants/tenant in the web interface to create your first
one. During creation process you can add users and zones to the new tenant.

Users may have one of the following permission levels:

• tenant users:

– cannot delete or create zones

– can create/edit/delete records in associated zones

• tenant admins:

– can create or delete zones

– can create/edit/delete records in associated zones

21

dino Documentation

Tenants admins can currently not add new users themselves.

22 Chapter 6. Users & Tenants

CHAPTER 7

Zone Data

Dino tries to mirror as little data as possible from PowerDNS. To enable permission managment, dino stores a list of
zone names within the database. However, there is no permanent storage of the zone records. The zone list is refreshed
each time a user opens the zone list.

Modifications like creating zones or deleting records are always carried out live via the PowerDNS API, if and only if
the appropriate UI features are used. There is no syncing happening in the background.

7.1 Modifcation outside dino

Since dino has to store some of the PowerDNS data localy, there are some currently some caveats when modifying
data outside dino. We are working to resolve most of them in future releaes.

• deleting zones outside of dino is not supported and will result in errors

• zones can be created outside dino and will be synced

• records can be created, changed and deleted outside dino and will be shown

• concurrent editing of the same zone from within inside and outside dino is not recommended due to the nature
of the PowerDNS API. Assuming a small enough time window, some records might get lost.

23

dino Documentation

24 Chapter 7. Zone Data

CHAPTER 8

User Signup

By default dino doesn’t allow new users to sign up themselves. This means that users have to be created manually,
using a username and password. The login data can then be passed to the user. Depending on your organisation,
allowing the right users to create accounts themselves might be required.

8.1 Enabling Signup

To enable users to create accounts themselves, add the DINO_ENABLE_EMAIL_SIGNUP setting to your dino con-
figuration (/etc/dino.cfg, or another location):

enable signup via email/password
DINO_ENABLE_EMAIL_SIGNUP=True
and/or enable social signup, see below
#DINO_ENABLE_SOCIAL_SIGNUP=True

Warning: Please be aware that this enables anyone with access to dino to create new, permissionless accounts.
This is probably not what you want. Continue to the next section to restrict signups.

8.2 Restricting Domains

To combat the “everything can sign up”-siguration, you can restrict the mail domains, which can be used to create new
accounts. This applies to both email/password accounts and social accounts. This can be used to only allow signups
from your company domain.

In /etc/dino.cfg (or wherever you configure your dino), add the following and restart dino:

DINO_VALID_SIGNUP_DOMAINS=example.com

The above configuration allows anyone with a ...@example.com mail address to create accounts.

25

dino Documentation

8.3 Social Accounts

Dino utilizes django-allauth to enable login and signup using various providers. Most of them will not be of much use
in typical dino deployments; you might find Google, GitLab or OpenID useful, if your organisation uses one of them
for authentication interally.

We’ll run through adding Google login to dino. The process is almost identical for most other providers; take a look
at the allauth documentation for your provider for details.

First, we need to load the google provider. In /etc/dino.cfg (or wherever you configure your dino), add the
following and restart dino:

DINO_LOGIN_PROVIDERS=google
and optionally
#DINO_ENABLE_SOCIAL_SIGNUP=True

Now, continue with the django-allauth docs about app registration, to create a config at google and add it to dino. After
those setps, the provider setup is finished.

26 Chapter 8. User Signup

https://www.intenct.nl/projects/django-allauth/
https://django-allauth.readthedocs.io/en/latest/providers.html#google
https://django-allauth.readthedocs.io/en/latest/providers.html#app-registration

	Database
	SQLite
	PostgreSQL
	MySQL / MariaDB

	Setup using pip
	Prerequisites
	Dino
	Updates

	Configuration
	Location
	File Format
	Options

	Webserver
	Installation
	Configuration
	Static Files
	Start nginx
	Finishing up

	Backups
	SQLite
	PostgreSQL
	MySQL / MariaDB

	Users & Tenants
	Users
	Tenants

	Zone Data
	Modifcation outside dino

	User Signup
	Enabling Signup
	Restricting Domains
	Social Accounts

